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A Novel NAND Flash Memory Architecture for Maximally
Exploiting Plane-Level Parallelism
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Abstract— Solid-state drive (SSD) has become one of the most domi-
nant storage devices and is rapidly replacing conventional storage devices.
The core component of SSD is NAND flash memory (NFM), where the
actual data are stored. Cost pressure is the most critical factor limiting
the further deployment of SSDs and past researches have focused on
developing cost-effective high-density NFM. Although the cost-driven
technology development increases per-chip capacity, it reduces channel-
/way-level parallelisms for the given device capacity, resulting in the
performance degradation. Such observation directs us to focus on a
novel NFM architecture exploiting plane-level parallelism. The distinct
features of this architecture are: 1) enabling a decoupled word-line
(WL) selection for the mated planes and 2) segmenting each plane
into subplanes for further maximizing the plane-level parallelism. The
experimental results show that decoupled WL selection improves the
throughput by up to 21.3% with a marginal overhead of less than
1%, compared to the conventional NFM architecture. In addition,
adopting the plane segmentation improves the throughput by up to 43.9%
with an additional overhead of 14%. Considering the tradeoff between
performance and overhead, the proposed NFM architecture is a cost-
efficient method to secure high performance under decreasing channel-
/way-level parallelisms in high-density NFM.

Index Terms— Cost-efficient, high-performance, NAND flash
memory (NFM), plane-level parallelism.

I. INTRODUCTION

Many attractive features of NAND flash memory (NFM) enable
NAND flash-based storage device (NFSD) to rapidly replace the con-
ventional hard disk drive. The success attributes to the dramatically
enhanced performance of NFSD. However, the high cost of NFSD
slows down the momentum for replacement. Thus, past researches
have mainly focused on cost reduction. Multilevel cell (MLC)-based
NFM [1]1 increases the bit density by storing multiple bits in a
single memory cell, but it fails to fully solve the cost issue as
the process technology scaling slows down. Recently, 3-D stacked
NFM [2] has been widely adopted. It places more cells in the unit
area in a vertical manner and achieves higher bit density without
process technology scaling. Unfortunately, the performance of NFSD
is affected adversely by the cost reduction. Using higher density
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Fig. 1. Architecture of conventional NFM.

NFM chips means fewer numbers of chips required to build a
storage of the same capacity. Such direction might be advantageous
from the cost and form factor perspectives. However, it could be
undesirable from the performance perspective, since fewer NFM
chips limit the architecture-level parallelism, e.g., channel- and way-
level parallelisms, which is the key parameter for enhancing the
performance of NFSD.

An alternative solution to mitigate this problem is to exploit
plane-level parallelism, which has been less studied because it could
adversely affect the cost. Contemporary NFM architectures impose
an architectural constraint to limit plane-level parallelism due to the
cost issue. More specifically, adjacent planes are mated and the mated
planes2 share most of internal peripheral circuitry to reduce an area
overhead. The mated planes can be accessed in parallel only when
their physical page addresses are identical [3]. Such a restriction on
addressing limits the exploitation of plane-level parallelism. Previous
researches for exploiting parallelism tried to maximize the parallelism
while maintaining the imposed addressing restriction [4]–[6]. In this
brief, we propose a more aggressive method which eliminates the
architectural constraint and dramatically improves the performance
with a reasonable area overhead.

The main contribution of our method is twofold. First, we propose
an NFM architecture which allows the decoupled word-line (WL)
selection for the mated planes and a new flash translation layer (FTL)
which is optimized for the proposed architecture to exploit the plane-
level parallelism. Second, we propose to segment each plane into
subplanes for further maximizing the plane-level parallelism. Such
segmentation also improves the access latency of NFM by shortening
the absolute width and height of an NFM cell array.

II. BACKGROUND AND RELATED WORKS

A. Basic NFM Architecture

Fig. 1 shows the conventional NFM (CNFM) architecture [7].
It consists of NFM cell arrays, page buffers, and other peripheral
circuitry. The NFM cell arrays are grouped into two or more planes.
Each plane owns a dedicated page buffer; hence, each plane can
operate independently [8]. However, the peripheral circuitry can serve
only one page address at a time and is shared by the planes as shown
in Fig. 1. Hence, the plane-level parallel operation, i.e., multiplane
operation, is allowed only when the page addresses of planes in the
same group are identical even though each plane has its dedicated
page buffer [3]. Such limitation inherently degrades the exploitation

2Mated planes refer to the physically adjacent planes within a single way.
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TABLE I

NFM ARCHITECTURE TRENDS

of plane-level parallelism. In order to increase the plane-level paral-
lelism, it is necessary to implement the peripheral circuitry dedicated
to each plane. This area overhead, however, prevents most of device
manufacturers from adopting such approach.

B. Parallelism in NFSD

The parallelization techniques can be categorized into channel-
level, way-level, and plane-level ones [9]. Past researches have
focused on the channel-level and way-level schemes, whereas the
plane-level schemes have been rarely investigated. In [10], it is
reported that the performance and the endurance of NFSD are
dynamically affected by the priority order of exploiting different
levels of parallelism. We classify the previous works in these three
categories and summarize them in this section.

1) Channel- and Way-Level Parallelisms: An intuitive approach
for performance improvement is to allocate multiple independent
channels to NFMs. Each channel can be accessed independently;
hence, the slow NFMs can be operated in parallel [11]. The major
drawback of this approach is nonmarginal area overhead of channel
interconnects which is a critical design parameter in NFSD design.
Extensive researches have addressed this issue and many commercial
NFSDs employ only limited number of channels. Due to this lim-
itation, some proposed a multichannel-based FTL which considers
channel-level and plane-level parallelisms together to further improve
the performance and provide better wear leveling [12].

Interleaving is a cost-effective way-level technique as it does not
require additional area overhead. It tries to maximize the bandwidth
utilization of each independent channel. In general, the number of
NFMs attached to a single channel can be easily computed by
dividing channel bandwidth by NFM bandwidth [3].

Many commercial NFSDs combine these channel- and way-level
techniques to maximize the performance.

2) Plane-Level Parallelism: In CNFM architecture, the request
rescheduling methods have been proposed to exploit the plane-level
parallelism [4]–[6]. They scan the request queue and reschedule the
requests to better utilize multiplane operations. The drawback of this
approach is that the chance for finding the requests accessing the
same page address is reduced as the bit density of NFMs becomes
higher. This is because the block size, i.e., number of pages per block,
increases more rapidly than the page size [18]. In particular, as shown
in Table I, the number of pages per block has continuously increased,
while the page size has been saturated. Therefore, exploiting plane-
level parallelism is harder for contemporary NFSDs as the bit density
is getting higher. In this brief, we tackle the architectural constraint of
CNFM, i.e., same page address restriction for multiplane operations,
for enhancing the plane-level parallelism.

III. NFSD WITH ENHANCED PLANE-LEVEL PARALLELISM

We introduce two major architectural improvements of NFM for
maximally exploiting plane-level parallelism. The first improvement
eliminates the restriction on the page address to increase multiplane

Fig. 2. Address segmentation in the conventional and the proposed
architecture.

Fig. 3. Architecture of decoupled WL NFM.

operations by dedicating the peripheral circuitry to each plane and
optimizing the FTL for the proposed NFM architecture. The second
improvement segments a plane into subplanes to exploit the plane-
level parallelism more aggressively and reduce the access latency of
NFM. Both improvements enhance the plane-level parallelism with
reasonable area costs.

A. NFM Architecture With Decoupled WL Selection

For the decoupled WL selection, the proposed method requires
modifications in hardware and software. The former represents the
architectural implementation for decoupled WL selection, while the
latter represents the FTL optimization to support the architectural
change.

1) Architectural Implementation: Once a physical address comes
in, it is partitioned into the channel, way, plane, block, and page
address as shown in Fig. 2. The page address actually consists of
WL address and page type. The WL address determines a physical
location within NFM cell arrays for the given page. On the other
hand, the page type maps the given physical page into one of logical
pages (e.g., LSB and MSB pages in MLC NFM). As discussed
earlier, the CNFM requires the same page address for multiplane
operations. Such a restriction can be eliminated to allow only different
WL addresses or both different WL addresses and page types.
For different WL addresses, each plane requires a separate address
decoding and voltage-level selection circuitry. These additional row
address decoder and WL-level selector consist of small logic gates.
On the other hand, the control circuitry over the operation timing and
input voltage can be shared by the mated planes.

For supporting different page types, we need to control the opera-
tion timing and input voltage separately for each page type [19]. In
this case, peripheral circuitry should be duplicated, which results in
significant area overhead.

Fig. 3 shows the proposed decoupled WL NFM (DW-NFM)
architecture that resolves the constraint of CNFM on the plane-level
access. The dotted square box represents the circuitry for decoupled
WL selection, which includes dedicated row address decoders and
WL-level selectors for each plane. The row address decoder trans-
mits a block address to the x-gating circuitry for physical block
selection and a page address to the WL-level selector for physical
page selection. The WL-level selector includes the control logic for
voltage selection zone, which determines a proper voltage level for
the adjacent WLs to prevent cell disturbance. It also includes the
WL control logic that selects an appropriate voltage level for each
read/write operation based on the physical location of selected WL.
Dedicated peripheral circuitry provides separate page address and
voltage level to each plane when different WL addresses are given.
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Fig. 4. Scheduling method. (a) Page address aware. (b) Page-type aware.

Fig. 5. Architecture of segmented decoupled WL NFM.

Note that DW-NFM does not support for multiplane operations
on different page types because the related circuitry incurs a large
area overhead. However, the experimental results show that the
performance is notably improved just by the decoupled WL selection.

2) FTL Optimization: Along with the architectural change,
we optimize FTL to fully exploit plane-level parallelism. We imple-
ment a page-type aware scheduling algorithm within the FTL to
maximally utilize the multiplane operations, which reorders enqueued
requests according to the page type.

Fig. 4 shows the difference between page address aware and
page-type aware schedulings. The page address aware scheduling is
used by CNFM architecture due to the aforementioned restriction on
multiplane operations. It can only pair the requests indicating the
same page address within the mated planes, as depicted in Fig. 4(a).
On the other hand, the page-type aware scheduling shown in Fig. 4(b)
is able to pair the enqueued requests indicating the same page type
within the mated plane. It increases multiplane operations, leading
to significant performance gain whereas it incurs marginal time
overhead for scheduling the enqueued requests.

B. NFM Architecture With Plane Segmentation

To further enhance the plane-level parallelism, we propose seg-
mented decoupled WL NFM (SDW-NFM) architecture. As shown
in Fig. 5, each plane is segmented into four subplanes, and each
subplane owns dedicated x-gating circuitry and a page buffer as the
conventional plane does. It also includes the dedicated row address
decoder and WL-level selector, which enable the decoupled WL
selection. More exploitable planes increase the plane-level paral-
lelism. In other words, up to eight requests, as many as the number of
subplanes, can be processed by a multiplane operation depending on
the characteristic of input workload. Note that the page-type aware
scheduling is further extended to better exploit this architecture.

In addition, SDW-NFM architecture improves latency due to the
segmented subplanes. The access latency of NFM, tR and tPROG,
is directly related to the width and height of NFM cell array, i.e., WL
length and bitline (BL) length [20]. SDW-NFM architecture further

TABLE II

NFSD CONFIGURATIONS

TABLE III

EXPERIMENTAL WORKLOADS

improves the access latency of NFM as the WL and BL are shortened
by half, respectively. Specifically, tR is improved by 25%–30% due
to the reduced WL setup and BL precharing time, and tPROG is
improved by 15%–20% due to the reduced program verification time.

On the other hand, SDW-NFM architecture provides a consider-
able performance gain, it requires some area overhead. For high-
performance NFSD, SDW-NFM is a good alternative solution to
increasing the number of channels and ways.

IV. EXPERIMENTS

A. Experimental Setup

We implement an in-house simulator to evaluate our proposed
method, which includes the page-level FTL [21] and greedy garbage
collection [22]. The hardware configurations of NFSD are summa-
rized in Table II. We fix the total NFSD capacity as 64 GB for fair
comparison and vary the NFM density from 16 to 64 GB according to
the number of ways. The latency of read, write, and erase operation
is obtained from [14]. The workloads used in experiments are listed
in Table III. They are extracted from [23] and [24]. We assume that
NFSD is a serial advanced technology attachment (SATA) device
and the depth of native command queue (NCQ) is 32 as specified
in SATA specification [25]. The depth of a request queue for the
proposed scheduling schemes is also configured to be 32 to properly
handle multiple requests from SATA interface.

B. Experimental Results

1) Parallelism Exploitation: The exploitation ratio of multiplane
operations is shown in Fig. 6. In CNFM, 2.1%–2.2% of total requests
turn into multiplane operations, while DW-NFM and SDW-NFM
exploit 49.3%–62.1% and 67.2%–78.4% of total requests, respec-
tively. The considerable number of total requests can be handled
with multiplane operations, thanks to the decoupled WL selection
within mated planes. The exploitation ratio is further increased by
16.3%–17.9% in SDW-NFM as the number of selectable planes
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Fig. 6. Exploitation ratio of multiplane operation.

Fig. 7. Throughput improvement. (a) Normalized to CNFM. (b) Normalized
to one-way 64-GB CNFM.

increases due to the plane segmentation. The exploitation ratio is most
enhanced when the higher density NFM, i.e., one-way 64-GB NFM,
is used because it provides more opportunities to perform multiplane
operations with a wider range of page addresses.

2) Throughput: Fig. 7(a) shows the throughput improvement nor-
malized to CNFM for one, two, and four ways. In DW-NFM,
the throughput is improved by 21.3% for one-way 64-GB NFM,
16.9% for two-way 32-GB NFM, and 15% for four-way 16-GB NFM
on average over CNFM. DW-NFM shows more improvement when
the higher density NFM is used, since the plane-level parallelism
becomes a dominant factor as the other parallelism factors, channel-
and way-level parallelisms, are less available as shown in Fig. 6.

The results for SDW-NFM show that the throughput is improved
by 43.9%, 39.5%, and 34% respectively, over CNFM. Compared with
DW-NFM, it is improved by 18.2% on average.

Fig. 7(b) shows the throughput improvement normalized to one-
way 64-GB CNFM. It presents the throughput improvement from
exploiting plane-level and way-level parallelisms at the same time.
The throughput of one-way 64-GB SDW-NFM is almost comparable
to that of two-way 32-GB CNFM and the throughput of two-way
32-GB SDW-NFM is superior to that of four-way 16-GB CNFM.
This result implies that SDW-NFM provides an equivalent or better
throughput even if the number of ways halves due to the adoption
of high density NFM. We discuss about the relationship between
throughput improvement and the required area in Section IV-B3.

Fig. 8 shows the sensitivity to the depth of a request queue
as it varies from 16 to 256. The throughput gradually increases
with respect to the queue depth. Moreover, the improvement rate
is higher in SDW-NFM than DW-NFM. This is because parallelism
for multiplane operations can be exploited more efficiently under the
segmented subplanes. This result also implies that the performance
can be potentially improved with the larger request queue.

Fig. 8. Sensitivity to the depth of a request queue.

Fig. 9. Performance gain.

3) Area Overhead: DW-NFM architecture requires a dedicated row
address decoder and a WL-level selector. As the row address decoder
consists of only a few logic gates, its overhead is small. In contrast,
the WL-level selector composed of numerous voltage switches is a
main factor for area overhead. Based on the actual layout size of
peripheral circuitry in contemporary NFM [14], the total overhead
for DW-NFM is about 0.8%.3

As mentioned in Section III, doubling page buffers and x-gating
circuitry are needed for the segmented subplanes in SDW-NFM archi-
tecture. The dedicated row address decoder and WL-level selector are
additionally required as many as the number of subplanes. Therefore,
its overhead increases by 14% compared to DW-NFM architecture.

In addition, the estimated cost overhead of DW-NFM and SDW-
NFM is 0.9% and 16.2%, respectively, over CNFM, using the formula
for cost per die [27].

For comparison, we define the normalized performance gain (NPG)
as follows:

NPG = Throughput

Area
(1)

This metric intends to compare throughput improvements per
unit area. As shown in Fig. 9, the NPG of one-way 64-GB DW-
NFM is 1.2 and one-way 64-GB SDW-NFM is 1.25. On the other
hand, the NPG is 1.18 if we choose two-way 32-GB CNFM.4 This
demonstrates that the proposed DW-NFM and SDW-NFM architec-
ture shows comparable performance improvement with reasonable
overhead with respect to the number of ways, which is beneficial in
high density NFM where the number of ways is constrained.

4) Timing Overhead: There is very little software timing overhead
for the proposed scheduling scheme. It mainly performs queue search-
ing and request pairing. This overhead is translated into hundreds
of nanoseconds when we assume the clock speed of an embedded
processor in the device controller is 400 MHz [28]. It is under
1%, which is insignificant considering performance gain from the
proposed scheme.

3The size of each functional block in CNFM was obtained from [14].
Based on this information, we compare the circuitry layout of CNFM, DW-
NFM, SDW-NFM using PARQUET [26], which is a simulated annealing-
based floorplanner.

4Adding a way requires a page buffer and peripheral circuitry additionally.
This overhead is about 25% as shown in Fig. 9.
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5) Power Overhead: In [14], NFM cell array and voltage
generation circuitry account for 45% and 50% of total power
consumption, respectively.5 The remaining peripheral circuitry
accounts for only 5%. The additional circuitry in the proposed NFM
architecture is part of the remaining peripheral circuitry and its
power consumption is negligible. On the other hand, we confirm
that power consumption increases when multiple pages are activated
due to multiplane operations. As static power consumption is smaller
by several orders than dynamic power consumption, we focus on
analyzing dynamic power consumption. DW-NFM shows roughly the
same power consumption for multiplane operations as CNFM because
two planes in both architectures can be simultaneously accessed.
As the exploitation ratio of multiplane operations in DW-NFM is
higher than CNFM, the total power consumption is increased by
20.6%, 15.3%, and 14.8% for one, two, and four-way DW-NFMs,
respectively, but the energy consumption is same as or smaller
than CNFM considering the throughput improvement. In SDW-NFM,
the number of activated planes varies from 1 to 8 due to the plane
segmentation, whereas 1 to 2 in CNFM and DW-NFM. The total
power consumption is increased by 38.7%, 35.9%, and 29.5% for
one-, two-, and four-way SDW-NFMs, respectively, if all subplanes
are activated simultaneously (Nact = 8).6 If Nact is 2, the total power
consumption is reduced by 43.5% compared to Nact = 8. Similarly,
the total power consumption with Nact = 4 is reduced by 28.1%. Since
all subplanes are not always activated simultaneously, we expect the
average power consumption will be smaller. In addition, we can
control the subplane parallelism (maximum of Nact) flexibly subject
to the performance and power constraint of a storage device, thanks
to more selectable planes than CNFM. Similar to DW-NFM, there is
no increase in energy consumption as throughput increases. Current
shows similar increase as it is proportional to the power consumption.

V. CONCLUSION

As a result of developing cost-saving techniques such as MLC and
3-D NFM, the bit density has been continuously increasing. Mean-
while, the performance is degraded because channel-/way-level par-
allelisms are reduced for given storage capacity in high density NFM.

To address this problem, we focus on the plane-level parallelism
that has not been thoroughly studied due to the architectural con-
straint. In this brief, we propose a novel NFM architecture that allows
the decoupled WL selection for multiplane operations within the
mated planes and propose the segmented plane NFM architecture
that aggressively exploits subplane-level parallelism and reduces
the latency of NFM. In addition, we propose the page-type-aware
scheduling to optimally exploit the proposed NFM architecture.

The simulation results demonstrate that DW-NFM architecture
presents the improvement of 21.3% for one way, 16.9% for two
way, and 15% for four way on average. SDW-NFM architecture
shows the improvement of 43.9%, 39.5%, and 34%, respectively. The
required overhead is quite reasonable if it provides the same or better
performance than adding a way, which is more costly.

Our proposed method will be more beneficial as the market moves
toward high capacity and high density NFMs.
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